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FOR ADAPTIVE FILTERS AND IDENTIFIERS
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Abstract

Generally, when stochastic approximation is used %o
identify the coefficients of a linear system or for an adaptive
filter or equalizer, the iterate Xn is projected back onto some
finite set ¢ = {x:lxil < B, all i}, if it ever leaves it. The
convergence of such truncated sequences have been discussed in-
formally. Here it is shown, under very broad conditions on the
noises, that {Xn} converges w.p.l. to the closest point in G
to the optimum value of X, Also, under even weaker conditions,
the case of constant coefficient sequence is treated, and a weak
convergence result obtained. The Se€t G is used for simplicity.
It can be seen that the result holds true in more general cases
but the box is used since it is the only commonly used constraint

set for this problem.
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y m‘.: ”"’r Introduction

Reforenee—{l} deals with a great variety of stochastic

approximation procedures, for constrained and unconstrained
systems and for convergence w.p.l. and weak convergence, all for
systems with correlated inputs. The techniques of [1] are readily
usable for many problems that are not explicitly treated there.
This will be illustrated here for one particular class of con-
strained problems which is of great current interest and which
arises in identification and in adaptive control theory. In fact,
it is just such constrained problems to which more attention
should be given, owing to their prevalence. The proofs aY¥e con-
tained in various parts o&—{ié-ﬂnd, here, after the problem is
defined, it is shown how to put the bits and pieces together. The
The problem and method are typical of a large class of adaptive
systems which can he treated by similar methods, and is worth

singling out.

The problem will be set up in such a way that it fits both
a standard identification problem and a standard problem in
adaptive equalizers. Let {dn} denote a scalar valued desired
output sequence, perhaps a training or reference signal, or output
of the system to be identified. The problem can readily be set up
so that all quantities {d

X p,} are complex valued, but

u ¢
n’ n’"ni’

in the interest of simplicity, we suppose that they are real
valued. Lef'{un} denote an input sequence set ¥, = (“n""'“n-r+l)"
and let {pn] be a noise sequence, independent of {un}. The ob-

served adaptive system output at time n 1is defined by
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u and the 'perturhbed' observed reference at time n is

X . . s,
jep M1 m-1 n

dn * P, The idea in [2], [3], [4] and in many other papers is

to adjust the system parameter Xn = (X X so that

no*-+2Xn,r1)’
the output '{yn} 'best matches' the {dn} in a mean square sense.

A common recursive adaptive algorithm for doing this is

Yosi "8 a6, 0w 9o

1.1)

L]
X, - a ¥, (b X -d-p), a +0, g By o A > 0.

Algorithm (1.1) has been the focus of an enormous amount
of effort. In practice, there is usually given a bound B such
that if some |xni| >B, then X . is immediately reset to the
closest value +B or -B. This projected version has received
little attention. Ljung [2] discusses it, but deals with it only

when the optimum value of X, is strictly inside the box

G = {xflxil < Bi}' The methods of [1] can readily handle such
problems whether or not the unconstrained optimum }s in G.
Assumptions are stated in Section 2. These are of the type used

in [1] and are quite unrestrictive. In Section 3, it is shown

that {Xn} converges w.p.l (under assumptions in Section 2) to

;he point in G which is closest to the optimum value. Incidentally,
if the optimuym is strictly interior to G, then the rate of con-

vergence results in [5] hold. Section 4 deals with a formulation -
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where a = 8 >0, a constant, and discusses some limit results

of a 'weak convergence' nature, also using techniques from [1].
In many of the proofs in [1], it is assumed that the
iterate sequénce {Xn} is bounded in some sense. Owing to the
possible use of the projection algorithm (as in this paper), this
boundedness assumption is hardly a restriction. This is one of .

the secondary points of this paper.

2. Assumptions for w.p.l1. Convergence.

n-1
Define m(t) = max{n;tn <t}l, t >0, where t_ = ) a.
= i wouqeg %,

=0 SN

S P e

Al. There is a positive definite symmetric matrix R such

that for each € > 0 and some T < o

m(jT+t)-1
(2.1) lim P{sup max| %

e 33n 2T  1=m{)T)

A2. There is a vector S such that (2.1) holds with

(wnd“-S) replacing (wiwi-R).

A3. (2D holds with ¥ p  replacing (wiw;-k).
Note that (Al) - (A3) imply that

'
a [lvgvil +lvd |+ lve [1+0 wpl as no e,




mit*s)
.
i=m(t)

Also, ai(wiw;-k)l + 0 as t » «, uniformly on bounded

s-intervals w.p.1, and similarly for the cases of (A2), (A3).
(See [1, Lemma 2.2.1)for the proof.)

Assumptions (A1) - (A3) are quite unrestrictive, [1, p.30-38)
gives several ways of readily verifying them, and they
hold in practical cases where (at least) the sequenées {un,pn,dn}
are stationary. The reader is referred to the cited reference
for more detail. We note only that the criteria for (Al) - (A3)
in [1] can be weakened even further by a finer use of laws of
large numbers and estimates of the type [1,(2.2.8)] which give
bounds on E max li E.IZ in terms of bounds on the corré&ation

n<i<N n

function of {£ ). (Al) - (A3) hold when {y;¥;-R}, etc., obey
certain laws of large numbers or when their covariances go to zero
sufficiently fast. E.g., if the processes are stationary and the

covariances are summable, and Z(ailogzi)2 < o then they hold.

(1, Theorem 2.2.2].

3. Convergence w.p.1.

For any x, let nG(x) denote the nearest point on G to x.

Then the truncated or projected form of (1.1) is

o L
Xne1 = Xy - apb (0 Xp-dp-pp) = X - hI(Xn’an)’
(3.1

Xpe1 = "g(Xpa1)»

where En - (vn,dn,pn).
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Define h(x) = -Rx + S. and 0 = R-IS. Then h(x) = -R(x-9).

Define the projection w(h(x)) of the vector field given

by h(x) onto G by

n(h(x)) = lim [nG(x+Ah(x))-x]/A.
0 <A->0

Then x = m(h(x)) 1is the 'constrained' or 'projected' flow

corresponding to x = h(x). Basically, the limits of {Xn} are

those of the solution to x = 7(h(x)), which in this case is the
.

nearest point on G to 6,

Theorem 1. Assume (Al)-(A3). Then {x,} given by (3.1),

converges w.p.1 to the closest point m,(8) in G to 0, the

optimal value.

Proof. The various parts of the proof appear in [1, Theorem 5.3.1)
(projection algorithm) and [1, Theorem 2.4.1 and 2.4.2] (a general
unconstrained Robbins-Monro algorithm), and in order to avoid
duplication we will merely put the pieces together.

By (A1) - (A3), |X —an + 0 w.p.l and there is a sequence

n+l
of positive real numbers {Yn}, Yo * 0 as n + ®, such that

lxn*l-xnl < Y,/2 except for a finite number of terms, w.p.l.

Let I = indicator of the set {|Xn+1'xn| < v,/2}. Define

PR———
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Y = byt ’ 5!
Vo Z Xn Jnhl(\“,gn)ln, % X a_h

n n n l(xn’&n

i

n+l’

-
m

n (nG(v:) - v;]. ¢, = (v;-vn) + [mglvy)) - X 1Q2-1)).
Then

B e R £
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(3.2) Xae1 = X, - aphy (€

Following [1, Theorem 5.3.1], define TO(') and ¢0(-), Jesp.,

to be the piecewise linear functions on [0,») with values
1 n-1

Riie s Bioy w ;
: a; T, and igo a;¢;, resp., at time t « Ist ()

n

e

i
r°(tn+-) ; To(tn), oM () ¢°(tn+-) ; oo(tn). Let X°(+) and

Kn(-) denote the piecewise constant functions on [0,~) which

are equal to Xn and Sn. resp., on [tn'tn*l)’ where
n-1

t
= - n " 0 =0
th * iZO aj. Define Hl(t) = IO hl(X (tn+s), 3 (tn+s))ds' and

let Xo(t) denote the piecewise linear function with value X,

p n . 1B ; . n s
at tn and set X () X (tn* Y. Then (X7(0) Xn)

XT(t) = XT(0) + HJ(t) + ¢"(t) + T"(1).

Fix ® not in one of the exceptional sets of zero probability
o

f (A1) - (A3). Then as in [1, Theorem 5.3.1], ¢™(:) » 0

g —_—

uniformly on bounded intervals as n + o, Similarly (following




the same proof) if {H¥(-)} were equicontinuous,
then so would {t"(:)} and {X™(-)} be.

Suppose for the moment that {HJ(-)} is equi-

continuous. Then we can select a subsequence (also indexed by n)
such that al1 X"(-), x"(0), H}(-), "(-), t(-) ‘converge
uniformly on bounded intervals, with limits denoted by X(-*),

X(0), Hl(')’ 0, t(:). Then

t
(3.3) X(t) = X(0) + fo Hl(s)ds + 1(t).

We need only prove the equicontinuity of {H?(o)} and characterize
Hl(-). This is done in the next two paragraphs. It will turn out
that Hl(s) = -RX(s) + S. But, then the proof of [1, Theorem

5.3.1] implies that
X = T(-RX + §) = T(-R(X-0)).

Define f£(x) = (x-0)'(x-8). Then £(x) = (x-8)'T(-R(x-8)), and

[1, Theorem 5.3.1] implies our theorem because the only points where

f(x) =0 are x =6 and x = ﬂG(Q) (which equals 6 when
8 €G). The uniqueness of the solution to the limiting differential
;quation (for each X(0)),and the uniqueness of its limit point,

imply that the particular fixed w and the chosen subsequence are

irrelevant.
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Equicontinuity of (H?(')} for the fixed w. The equi-
continuity and the characterization of Hl(-) follow by use of
the method of [!, Theorems 2.4.1 and 2.4.2). If {ﬁn} is a
bounded sequence, then {H?(-\I is obviously equicontinuous
since hl(XO(u),K“(u)) is uniformly bounded. Otherwise, use
the method of [1, Theorem 2.4.2], whose conditions are implied

by (A1) - (A3). We can write

xn+1 ae an(u'nwn-R)Xn s an(wndn+pnwn's)

- nn(RXn-S) + ¢n + Tn. s z

Uniform continuity on [0,®) of the piecewise linear function
n-1
with value ién ag(vid.+p,v,-S) at t  follows from (A2,3)

for our fixed w. (See the second seéntencepelow (A3).)

We only need show uniform continuity on [0,®) of the

1
piecewise linear function with value ¥ ailwiwi-RI at t
i=0

Once this is done, H?(-), the shifted sequence,will obviously

n’

be equicontinuous (the X, coefficient,

heing bounded, is not important). Let ¢ = (wno,...,w

n n,r-l)"

It is sufficient to show the uniform continuity for the linear
. o
t 3 ;
interpolation of{ ) angil for each 1i. But this follows from
j= n-1

A1), which implies that 2
(AD) PRaEs Y. ) a;v..  increases

. i=0
asymptotically as |} ajRii = t R;;, since (see note below (A3))
. =0
m(t+s) 2 -
} a_(v5.- R..)| » 0 uniformly on bounded s-intervals as
jsm(ty noni ii
t .’ wl
¥ n-1

: Y : 2
i.e., for the piecewise linear function with valu2 ,2 a; ¥54 at t_.
j=0 J "3 n




Characterization of the limit H,(-). Let n still index
the convergent subsequence. For our fixed w, we need only

show that

m(t_+t)
(3.4) | %“

a.(v.¢:-R)X.| » 0O uniformly on bounded
Fumpn Y AU

t-intervals as n + o

since it follows from this and (AZ2,3) that H®(:) =+ -RX(-) + S,

as desired.

e

(3.4)zan readily be done by following almost word for worf the
method of proof of a similar result in [1, Theorem 2.4.1], with

the identifications @(|X-X'|) = const..|X-X"| gy = constant and
Tk s

g,(8;) = ] 5, Then (A1) implies (3.4). The argument in the
s i=0 -

reference shows that the {Xn} fluctuations are'slow enough'in

1
comparison with those of the (ijj = R} for the limit of
(3.4) to be the same as it would be if Xn were a constant.

Q.E.D.

4. Constant a = B > U
Theorems 4.3.1 and 6.2.3 present the analogs of Theorems
2.4.1 and 5.3.1, resp., under weaker conditions than (Al) - (A3)
Put where the convergence is in a weak sense. Instead of adapting
them to the current projection problem, we merely formulate their

use in another related and very important problem: algorithm (3.1)

where a, = B >0. Indeed, many, if not most, uses of (3.1) use

constant coefficients a, =8, (at least for the 'tails' - once
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the 'transient' period is over). For small g, it might take
quite a while for (transient period) Xn to get near its limit
(6 or the projection of ® on G). We are concerned (more or
less) with what occurs after this transient period. Let Xs

denote the solution to (3.1) and define XB(-) = piecewise linear

interpolation (intervals Bg) of '{XE}. Let N be a sequence

B
of integers (roughly defining the transient period, perhaps), such

that NB -+ o and NBB - o as R =+ 0.

Ad. let & represent (wnwn-R) or wndn - S orévy.p..

Here m(t) = [t/B] the integral part of t/B. Assume

il m(t+s)
sup P{max |
t > s<T i=m(t)

agil e >0} =0, any T <=,

each € > 0.
This condition is discussed after the Theorem.
"2

Theorem 2. Assume that E[y v |, Elwnpn|2 and Elwndn|2 are

uniformly bounded, and assume (A4). Then {XB(NBBW-)} converges

weakly (in the function space Cr[O,w)) to the constant function

nG(e) as B > 0, where wG(e) = nearest point to 6 on G.

In particular XSBB+k > nG(G) in probability as 8 = 0, each

% > 0, and more strongly

L]

lim P{ sup IXS B+k-ﬂG(9)| >e >0} =0 for each t
B>0 k<t/g B

and € > 0.
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Thus for small f and large n, {Xn) 'hovers' around 7.(0)

as desired.

The proof will not be given since it follows the general lines
of the appropriate parts of [1, Theorems 4.3.1 and 6.2.3], which,
in turn, are just weak convergence analogs of the theorems upon
which Theorem 1 is based. To adapt the proofs of [1] to the present
case, merely replace the shifted sequences X“(-), etc. of [1] by
XB(NBB+-), etc, If Elgilz is bounded as assumed above then, by
[1, Theorem 4.1.1] (A4) holds if there are R(i) such tﬁ?t

]
|n€j£j+1| < R(i) » 0 as i =+ «, a very weak condition indeed.

Conclusions. The projected iterate sequence converge w.p.l to
the closest point on G to the optimum (converges in probab ility

in the weak convergence case).
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